Synthesis of Some Nitrosaminopurine and Hydroxyaminopurine Derivatives (1)

A. Giner-Sorolla and V. R. Taracido

Memorial Sloan-Kettering Cancer Center, New York, New York 10021

Received November 19, 1974

Secondary and tertiary amines exist in several hypermodified bases in nucleic acids (2-4). We prepared some nitrosaminopurines corresponding to methylaminopurines occurring in DNA and tRNA by their interaction with nitrous acid in a variety of pHs and temperature conditions (5). In the present work, the synthesis of nitrosamino derivatives from the naturally occurring (2-4) N^6 -(Δ^2 -isopentenyl)adenine and its 9-ribosyl derivative is reported. An improved synthesis of the previously reported N^2 -nitroso- N^2 -methylguanine (4) is also described. These nitrosamino derivatives may show, as most of the known nitrosamines (6,7), carcinogenic properties.

It is known that aromatic secondary amines undergo metabolic oxidation to N-hydroxy derivatives which are carcinogens (8,9). The secondary amines existing in nucleic acids could conceivably be oxidized in vivo to potentially carcinogenic N-hydroxy derivatives. We reported the synthesis of 6-methyl-hydroxylaminopurine (10); we have now prepared the N^2 -hydroxy derivative of the naturally occurring N^2 -methylguanine.

Treatment of N^6 -(Δ^2 -isopentenyl)adenine (I) and its 9-ribosyl derivative (II) with sodium nitrite in acetic acid gave N^6 -nitroso-(Δ^2 -isopentenyl)adenine (III) and N^6 -nitroso-(Δ^2 -isopentenyl)adenosine (IV). N^2 -methylguanine (V) and nitrous acid afforded N^2 -nitroso- N^2 -methylguanine (VI). Reaction of N-methylhydroxylamine with 2-chloro-hypoxanthine (VII) yielded N^2 -hydroxy- N^2 -methylguanine (VIII).

EXPERIMENTAL

Ultraviolet absorption spectra were determined with a Cary recording spectrophotometer, Model 11. Ascending paper chromatography was run on Whatman No. 1 paper on the following solvent systems: concentrated aqueous ammonia-water-isopropyl alcohol (10:20:70); 1-butanol-water-acetic acid (50:25:25); and 1 M ammonium acetate-ethanol (30:70). The determination of melting points was carried out with Mel-Temp and Thomas-Hoover melting point apparatus and the temperatures were corrected. Analyses were performed by Spang Microanalytical Laboratory, Ann Arbor, Michigan.

 N^6 -Nitroso-(Δ^2 -isopentenyl)adenine (III).

A solution of N^6 -(Δ^2 -isopentenyl)adenine (1, 0.40 g., 2 mmoles) in 50% acetic acid (5 ml.) was cooled to 5° in an ice and

water bath. A solution of sodium nitrite (0.55 g., 8 mmoles) in water (1.5 ml.) was added dropwise. The reaction was kept at 5° for 1 hour and 3 hours at 25°. The resulting precipitate was filtered, washed repeatedly with water and then with ethanol. After drying in vacuo, 0.41 g. (90%) of light yellow crystals were obtained, m.p. 220° dec.

Anal. Calcd. for $C_{10}H_{12}N_6O$: C, 51.71; H, 5.21; N, 36,18. Found: C, 51.46; H, 5.29; N, 36.25.

 N^6 -Nitroso-(\triangle^2 -isopentenyl)adenosine (IV).

To a solution of N^6 (Δ^2 -isopentenyl)adenosine (II, 0.33 g., 1 mmole) in water (3 ml.) containing 50% acetic acid (2 ml.), sodium nitrite (0.80 g.) in water (3 ml.) was added dropwise and stirred for 18 hours at 5°. The resulting precipitate was filtered, washed repeatedly with cold water and ether. After drying in vacuo, yielded 0.17 g. (43%) of yellow crystals; m.p. 92° dec.

Anal. Calcd. for $C_{15}H_{20}N_6O_5 \cdot 2$ H_2O : C, 44.99; H, 6.04; N, 20.99. Found: C, 45.29; H, 5.50; N, 21.20.

 N^2 -Methyl- N^2 -nitrosoguanine (VI).

A solution of N^2 -methylguanine (V, 0.33 g., 2 mmoles) in 2 N hydrochloric acid (5 ml.) was cooled to 5°. Sodium nitrite (0.55 g.) in water (1.5 ml.) was added dropwise and the reaction stirred at 5° for 1 hour and 3 hours at 25°. The precipitate was filtered, thoroughly washed with cold water and then with ethanol, dried *in vacuo* to yield 0.18 g. (51%) of light yellow

Table I $\label{eq:absorption} Absorption \ spectra \ \lambda \ max \ nm \ (\epsilon \ x \ 10^3)$

Ш	206 (14.2)	265 (6.28)	302 (8.26)	(ethanol)
IV	215 (12.0)	294 (8.15)		(ethanol)
VI	255 (9.71) 242 (12.4)	292 (6.93) 270 (7.33)		(pH 1) (pH 8.4)
VIII	252 (7.60) 255 (6.51)			(pH 1) (pH 6.6)

crystals. The mixed m.p., uv spectra at different pHs and paper chromatography (3 solvents) were indistinguishable from a sample of N^2 -methyl- N^2 -nitrosoguanine previously prepared by nitrosation of N^2 -methylhydrazinoguanine (5).

 N^2 -Methyl- N^2 -hydroxyguanine (VIII).

406

A solution of 2-chlorohypoxanthine (11) (VII, 0.50 g., 3 mmoles) in an ethanolic solution of methylhydroxylamine (100 ml.) (made from 5.5 g. of methylhydroxylamine hydrochloride in 100 ml. of ethanol and neutralized with a 0.1 N ethanolic solution of potassium hydroxide) was refluxed for 3 hours. The solution was evaporated to dryness and the residue suspended in ethanol, filtered and washed with ethanol. The precipitate was dried in vacuo to yield 0.26 g. (48%) of white crystals, m.p. 250° dec

Anal. Calcd. for $C_6H_7N_5O_2$: C, 39.77; H, 3.89; N, 38.66. Found: C, 39.72; H, 3.86; N, 38.80.

Treatment of (Methylnitrosamino)purines (III, IV, VI) and N^2 -Methyl- N^2 -hydroxyguanine (VIII) with Raney nickel.

A suspension of each of the above compounds (25 mg.) in water (10 ml.) was boiled with Raney nickel (100 mg.) for I hour. From the reaction solutions, the corresponding methylaminopurines (I, II, V) were identified by uv absorption spectra (at pH 6 and 13) and paper chromatography (single spot in 3 different solvents).

REFERENCES

- (1) This work was supported in part by the National Cancer Institute, Grant 08748.
- (2) R. H. Hall, "The Modified Nucleosides in Nucleic Acid." Columbia University Press, New York, pp. 257 and 281 (1971).
- (3) S. Nishimura, Prog. Nucleic Acid Res. Mol. Biol., 12, 49 (1972).
- (4) H. G. Zachau, Angew. Chem. Intern. Edit. Engl., 8, 711 (1969).
- (5) A. Giner-Sorolla, J. Longley-Cook, M. McCravey, G. B. Brown, and J. H. Burchenal, J. Med. Chem., 16, 365 (1973).
- (6) P. N. Magee and J. M. Barnes, Adv. Cancer Res., 10, 163 (1967).
- (7) H. Druckrey, R. Preussmann, and S. Ivanokovic, Ann. N. Y. Acad. Sci., 163, 676 (1969).
- (8). E. C. Miller and J. A. Miller, *Pharmacol. Rev.*, 18, 805 (1966).
- (9) E. K. Weisburger and J. H. Weisburger, Adv. Cancer Res., 5, 331 (1958).
- (10) A. Giner-Sorolla, S. A. O'Bryant, C. Nanos, M. R. Dollinger, A. Bendich, and J. H. Burchenal, J. Med. Chem., 11, 521 (1968).
- (11) J. A. Montgomery and L. B. Holum, J. Am. Chem. Soc., 79, 2185 (1957).